Syllabi for entrance test for admission to Ph. D. in Chemistry for the Justin 2013-24

- 2. Structure and bonding in homo-and heteronuclear molecules, including shapes molecules (VSEPR Theory)

 3. Concentr of saids and transfer and here concent. Monagueous solvents.
- Main group elements and their compounds: Allotropy, synthesis, structure and bonding industrial importance of the
- 5. Transition elements and coordination compounds: structure bonding theories, spectral and magnetic properties,
- 6. Inner transition elements: spectral and magnetic properties, redox chemistry, analytical applications.
- 7. Organometallic compounds: synthesis, bonding and structure, and reactivity, Organometallics in homogeneous

- 10. Bioinorganic chemistry: photosystems, porphyrins, metalloenzymes, oxygen transport, electron-transfer reactions; Analytical chemistry-separation, spectroscopic electro-and thermo analytical methods.
- 11. Characterisation of inorganic compounds by IR, Raman, NMR, EPR, Mossbauer, UV-vis. NQR, MS, electron
- 12. Nuclear chemistry: nuclear reactions, fission and fusion, radio-analytical techniques and activation analysis.

- 1. Basic principles of quantum mechanics: Postulates, operator algebra; exactly- solvable systems: particle-in-a-box, harmonic oscillator and the hydrogen atom, including shapes of atomic orbitals; orbital and spin angular momenta; Physical Chemistry:
- Approximate methods of quantum mechanics: Variational principle; perturbation theory up to second order in energy;
- Atomic structure and spectroscopy: term symbols; many-electron systems and antisymmetry principle. Chemical bonding in diatomics; elementary concepts of MO and VB theories; Huckel theory for conjugated π-
- 5. Chemical applications of group theory; symmetry elements; point groups; character tables; selection rules. Molecular spectroscopy; Rational and vibrational spectra of diatomic molecules; electronic spectra; IR and Raman
- 7. Chemical thermodynamics: Laws, state and path functions and their applications; thermodynamic description of various types of processes: Maxwell's relations; spontaneity and equilibria; temperature and pressure dependence of
- thermodynamic quantities; Le Chatelier principle; elementary description of phase transitions; phase equilibria and
- Statistical thermodynamics: Boltzmann distribution; kinetic theory of gases; partition functions and their relation to
- 9. Electrochemistry: Nernst equation, redox systems, electrochemical cells; Debye-Huckel theory; electrolytic conductance - Kohlrausch's law and its application; ionic equilibria; conductometric and potentiometric titrations.
- 10. Chemical kinetics: Empirical rate laws and temperature dependence; complex reactions; steady state approximation; determination of reaction mechanisms; collision and transition state theories of rate constants; unimolecular reactions; enzyme kinetics; salt effects; homogeneous catalysis; photochemical feactions.
- 11. Colloids and surfaces: Stability and properties of colloids; Isotherms and surface area; heterogeneous catalysis.
- 12 Solid state: Crystal structures; Bragg's law and applications; band structure of solids.
- 14. Data analysis: Mean and standard deviation; absolute and relative errors; linear regression; covariance and correlation coefficient

Organic Chemistry

- JUPAC nomenclature of organic molecules including regio-and stereoisomers.
- Principles of stereochemistry: Configurational and conformational isomerism in acyclic and cyclic compounds: attropycology, stereoselectivity, enantioselectivity, diastereoselectivity and asymmetric induction.
- Aromasicay. Benzenoid and non-benzenoid compounds generation and reactions.
- Organic reactive intermediates: Generation, stability and reactivity of carbocations, carbanions, free radicals,
- Organic reaction inechanisms involving addition, elimination and substitution reactions with electrophilic, excleophilic or radical species. Determination of reaction pathways.
- Common named reactions and rearrangements applications in organic synthesis.

Prof doi Devi Joga Dr. K. Lal Kasmur Dr. Sypoti

Chalmerrana Department of Chemistry Guru dumbhoshwar University of Sc. & Yech., 1985All

- Organic transformations and reagents: Functional group interconversion including oxidations and reduction; common
 catalysts and reagents (organic, inorganic, organometallic and enzymatic). Chemo, region and stereoselective
 transformations.
- 8. Concepts in organic synthesis: Retrosynthesis, disconnection, synthons, linear and convergent synthesis, umpolung of reactivity and protecting groups.
- Asymmetric synthesis: Chiral auxiliaries, methods of asymmetric induction substrate, reagent and catalyst controlled reactions; determination of enantiomeric and diastereomeric excess: enantio-discrimination. Resolution – optical and kinetic.
- 10. Pericyclic reactions- electrocyclise, cycloaddition, sigmatropic rearrangements and other related concerted reactions. Principles and applications of photochemical reactions in organic chemistry.
- 11. Synthesis and reactivity of common heterocyclic compounds containing one or two heteroatoms (O.N.S).
- 12. Chemistry of natural products: Carbohydrates, proteins and peptides, fatty acids, nucleic acids, terpenes, steroids and alkaloids. Biogenesis of terpenoids and alkaloids.
- 13. Structure determination of organic compounds by IR, UV-vis, IH & 13C NMR and Mass spectroscopic techniques.

Chairperson

Department of Chemistry
Guru Jambhochwar University

of Sc. & Tesh., HIBAR